10. ๐ง Custom embeddings
By default, Tenyks generates embeddings (vector representations of data) after you upload your dataset.
On Tenyks' web platform, you can navigate through a feature called Embedding Viewer ๐ผ๏ธ, which enables you to identify patterns or clusters (groups of similar data points) in your dataset ๐.

However, you can actually bring your own embeddings. Here's how to do it!`
- Define the location of yuor embeddings (e.g., Amazon S3, Azure, etc)
custom_embedding_location = {
"type": "aws_s3",
"s3_uri": "S3_URI_TO_CUSTOM_EMBEDDINGS_FOLDER",
"credentials": {
"aws_access_key_id": "XXXXXXXX",
"aws_secret_access_key": "XXXXXXXXXX",
"region_name": "XXXXXXXX",
},
}
- Upload the embeddings
dataset.upload_custom_embeddings(
embedding_name="my_embeddings",
embedding_location=custom_embedding_location
)
Here you can see an example of the expected JSON format
{
"image_embeddings": [
{
"file_name": "000005.png",
"embeddings": [
0.0941977963438363,
-0.7633055149197727,
0.2745402182841452,
-0.3159639551745177,
0.8309993806478222,
0.1842604575241451,
-0.17650862339911622,
.....,
0.9767816827921139,
-0.9716360654450817,
-0.4943288128254306,
-0.917719311642059
]
},
{
"file_name": "000002.png",
"embeddings": [
-0.3892604112721678,
-0.18501907737463008,
-0.3945027835161057,
-0.8961710284212987,
-0.7449565108954637,
....,
-0.1312412920235193,
0.8147100024219016,
0.9368189951449468,
-0.23959517885780435,
0.8640233210706019,
-0.24393422152741917
]
}
]
}
Updated 26 days ago